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The uniqueness of the smooth solution in a problem with friction [1, p. 34] is established for the case when the set of virtual 
rigid displacements is non-trivial. 

1. T H E  E Q U I V A L E N C E  O F  T H E  B O U N D A R Y - V A L U E  
A N D  V A R I A T I O N A L  F O R M U L A T I O N S  O F  A 

P R O B L E M  W I T H  F R I C T I O N  

Let f~ C R 2 be a bounded domain with a fairly regular boundary F. For the displacement vector u = (ul, u2) we 
define the strain tensor 

. .  l(aui auj 
eq =eijtu)=_-:/_'=--+_--=--/, i , j = l , 2  2L0x j 0x, ) 

The stress tensor a is a linear combination of components of the strain tensor 

Oij = O/j(n) = CijplEpl(U ), p,l = 1,2 

(summation is understood to take place over repeated indices). The components of the elastic moduli tensor CiM 
possess the usual symmetry properties 

Cijpl = Cjilp = Cpli), i , j ,p,l  = 1,2 

and we assume the existence of a positive constant Co such that 

CijplE 0 (U(X))Epl (U(x)) > COE/j (U(X))Eq (U(X)) 

Veij(U(X)), V x c f L  i , j ,p , l=l ,2  

We consider the formulation of the problem with friction. 
Suppose that on a part F1 of its boundary F the body f~ is subjected to the action of surface forces 

ei=oi=Oijllj, i= 1.2 

(where n = (nl, n2) is the unit vector of the outward normal to F). On the part F0 the following boundary conditions 
are given 

U n = n . n = O ,  o t = 0  

where at is the shear stress vector, and on the part  r f  of the boundary F boundary conditions are imposed which 
correspond to the Coulomb law of friction and two-sided contact [1] 

o n  = o~ jn jn i  = T . ,  T .  = T . n 

if Iot I < g, then ut = 0 (g > 0 on Ff); if Iot I = g, then a ~. ~> 0 exists such that ut = -;~,ot. 
Here T = (7"1, 72) is the force with which the second body acts on f~ in the contact zone, g(x) is the value of the 

friction force, and at is the shear component of u. 
In the domain f l  we have the equihq~rium condition 
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-~[O0(u)]/~x j = F i, i f  1,2 (1.1) 

where F = (Fz, F2) is the vector of forces specified in £2. 
Below we shall use the functional spaces [2] L2a,  L2(I"), WZ~(~), w~(r), w~(~). 
We introduce the Hilbert space [3, p. 27] 

H = l~ [W~(~)] 2, u. = 0 on F0} 

with a scalar product induced from [W~2(f~)] 2. 
We consider the extremal (variational) problem [1, 4] 

= l a ( u , u ) -  L(u) + j(n)  -¢ min, J(u)  

where 

u c H  

¢t(u,u) = I Ci~l£ij(U)gpl(U)d~ 

L(u)= 1 6ui df~+ I r .u .dr+ I P~uidr, j (u )=  ] Slu, ldr .  
a r: q l'f 

F=(FI,F2)¢[/~(~)] 2, P=(Pi,P2)¢[/--z(rt)] 2 

T=(TI,T2)¢[~(F/)] 2, g(x)¢L**(l"f), g>0 on F/ 

(1.2) 

The solution of the problem with friction is also the solution of problem (1.2). If the solution of problem (1.2) 
belongs to the space [I~2(f0] 2, then it is also the solution of the problem with friction. These facts are proved in 
the same way as in [1], where the problem with friction is investigated with the condition F0 = F1 = ~. 

In fact, suppose that u is a solution of the problem with friction. It follows from the boundary conditions of the 
problem that 

Ot(u)-u t+glutl=0 on Ff 

and so for any ~ ~ H we have 

a t ( u ) . ( g t - u t ) +  g(lvtl-lutl)>O on Ff 

We multiply both sides of Eq. (1.1) by ~ - u and, using Green's formula, we obtain 

a(u,1)-u)- J [o,(u)'(u,-ut)+on(u)(~)s-u.)]dr- 
r/vro 

- / Oi(")(1)i - . i )~d["  J Fii(1J-tt)idL'~ 
rt a 

It follows from the boundary conditions that 

(1.3) 

(1.4) 

Hence 

j [a~ ( . ) :  (ut  - u , )  + o .  ( . ) u .  - u. ) ]dF  = 0 
I"o 

a ( u . u -  . ~ -  L ( ~ -  u) = | Ot ( " ) '  ( " ,  - % )dr" 
r l  

We put j(~) = J rig [ut [dU and add to both sides of the equation the expression/(x~) - j (u) .  We obtain (using (1.3)) 

a(u, l~-u)+ j ( ~ ) -  j ( u ) -  L(1) - . )  ffi I! ;~ 0 

!! = J [~, (u) . ( 'Ut -u~,)+s( l 'o f l - lu ,  I) ]dF 
r r 

from which the variational inequality 

a ( u , ~ - u ) + j ( ~ ) - j ( u )  > L ( o - u ) ,  Vx~eH (1.5) 

follows, which is equivalent to problem (1.1) (see [5]). 
Suppose now that u ~ [Wez(~)] 2 is a solution of problem (1.2), and, of course, also a solution of inequality (1.5) 

and D(f~) is the space of infinitely differentiable functions with compact support in t2. In the variational inequality 
(1.5) we put ~ = u _+ ~p, q~ ~ [D(f~)]'. Bearing in mind that all boundary integrals are equal to zero and 
j (u  - (p) - j ( u )  = O, we have 
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a (u ,¢ )=  |~eidt~, Vf~e[D(f~)] ~ 

from which (using the smoothness of the solution) the equilibrium equation (1.1) follows. 
Then, applying Green's formula, we derive Eq. (1.4) from the equilibrium equations. Together with the variational 

inequality this gives 

where 

J(o i (u ) -  ~)( 'o i -g . )~l~+ ii + i2 ~0,  V~e. t t  (1.6) 
r, 

12 = l ( o . ( u ) - ~ ) ( v . - u . ) d r .  
rl 

Let ~P0 be the space of vector functions ¥ e [W~r2(F)] 2 with supports in F1. We take x} = u + ¥, where ¥ e ~P0- 
It is clear that in this case 

f ( o A u ) - P , ) ¥ d r f f i o ,  r y E %  
rt 

From this it follows [1] that Ol(U) -- P1 almost everywhere in F1. This also gives/1 + /2  ~> 0, V~ ~ H. 
We put . = u -+ 9, where ¢ ¢ [W~(F)]  z is a vector function such that I~1 = 0 o n  r I, and q~n ~ W~t2(F) is an 

arbitrary function with support in F/, We then have on = T~ almost everywhere on FI [1]. It then follows from (1.6) 
that 

I I ~ O. V~cH. (1.7) 

Let ~P be the space of vector functions ~ ~ [W1/2(F)]2 with support in F I. ff ¥ ¢ ~P then we expand ¥ as follows: 
¥ = Y n  n + Yt, ~l/t, Yn = ¥"  n and put ut = Yt in (1.7). Since O t ( ' D )  " n = 0 and u e H, we have ot(~) • Yt = at(u) - ¥. 
Using I~tl <- I ¥ l , w e  obtain 

I [ot(u)'V+gl¥1]dF- I [Ot(u)'ue +glu#l]dF>0, V V c W  
r i r /  

from (1.7). 
Replacing ¥ by +_X¥ (X ~> 0) we lind that 

I , O , ( u ) ' ¥ d F ] < , g l , l ] d l " . V y e ~ P ; , I o t ( u ) u , + g l u , , l d l ' < O  (1.8) 
rs I r l  rr 

In the first inequality in (1.8) we represent at(u) byg-la~(u)g. We then obtain [1, p. 136] ]at(n) ] ~< g almost every- 
where on F~ In this case at(u) - ut + g]ut]>~ O, which, together with the second inequality (1.8), gives the equality 

at(u) • ut + g l ud = 0 a.e. on  Ff (1.9) 

equivalent to the boundary condition which is imposed on the shear components ut and ot in the problem with 
friction. 

Hence problem (1.2) can be considered as a variational formulation of the original problem with friction. 

2. T H E  U N I Q U E N E S S  O F  T H E  S O L U T I O N  O F  T H E  P R O B L E M  W I T H  
F R I C T I O N  

The kernel R of the bilinear form a(u, ~) = f 0 C#.pc#(~)dfl consists of the vector function p = (Pl, P2) where 
pl(x) = al - bx2, p2(x) = a2 + bXl and al, a2 and b are arbitrary fixed numbers. The subspace/~ = H n R is a set 
of virtual rigid displacements (i.e. displacements of  f~ as an absolutely rigid body, retaining the strict restrictions). 

If for any non-zero vector p ~ R we have the inequality 

I #p ,  ldr-~L(p)~> 0 (2.1) 
U 

then the variational problem (1.2) is solvable. 
The condition of solvability is proved in the same way as in [1], where a similar condition was derived for the 

case Ff = F. Indeed, because the functional J is continuous and convex, it is sufficient to show [1, p. 68] that 

J(u) ~ +o% if I~u~l ~ 0% u ~ H (2.2) 



314 R .V.  Narnm 

For ~ • H we put w ffi ~ - Qu, where Q is the orthogonal projection in [L2(t'I)] 2 from H onto / ] .  Hence 
-- w + p, p • / ] .  We put e(~) = f o ~(~)~(~)df~ and H0 is the norm in [L2(f~)] 2. 
We have [5, p. 80] 

where Co, Cl and C2 are positive comtants. 
Furthermore 

e(u)+II~II0 2 = e(w)+liwlI20 +llpll0 2 (2.3) 

By the Korn inequality expression I~uI = (~(~) + [ul ~ )~  is a norm in H. From (2.3) the norm II~[ is equivalent 
to ~ [  + Iip[~ From (2.1) and the finite dimension of the set/~ a constant C > 0 exists such that 

glpt ldF-I L(p )l> CIIplI0 
r/ 

Moreover 

Hence 

Ij(w + p ) - j ( p )  <1 ~ glw tldVl< C311wll 0 (C 3 = const > 0) 
r: 

J(~)  > l a ( w ,  w) + j ( w  + p) + CIIpll 0 - j ( p ) -  L(w) > C 4 (11 wll 2 +llpll 0 ) + C 5 II wll 

(where C4 and Cs are positive constants). 
Using the fact that I~ll is equivalent to the quantity I~l + Ihal~ assertion (2.2) is proved. 
Condition (2.1) guarantees the existence of a solution of the variational problem (1.2). The question of the 

uniqueness of the solution of the problem with friction in the case when R is non-trivial appears not to have been 
investigated [1, 6] up until now. 

Below we shall take F 0 and Ff to be rectilinear sections. For convenience we will make thexl coordinate axis lie 
along F ,  Then the subspace R ffi H N R consists of vector functions of the form p = (a, 0), where a is an arbitrary 
constant. 

Note that in order to satisfy the condition of solvability (2.1) it is necessary for the sections F/and Fo to be 
non-orthogonal, as otherwise j(p) = f rfglptldF = 0 and inequality (2.1) is not satisfied. 

Given these assumptions about F0 and Ff the following theorem holds. 

Theorem. Suppose that the condition of solvability (2.1) is satisfied. Then the solution of variational problem 
(1.2) is unique in the space [W22(t))] 2. 

Proof. Suppose there are two solutions nl and u2 in [we(I~)] 2. We have 

0 = J(ul  + (u 2 - u I ) ) - / ( u  I ) = a(u I ,u 2 - u I ) -  L(u 2 - u I ) + j (u  2 ) -  

- j ( u l  ) + 2a (u2  - u l  ,u z - u  I ) 

In view of (1.5) the last term on the fight-hand side of this equation vanishes. Therefore u2 - Ul • R ,  i.e. Ii 2 ----- 

Ul + p where p = (a, 0). 
We put Fi = {x • Ff :[ ot(u/)[ < g} (i = 1, 2). It is clear that F1 = F2. We consider the two possible cases: 

(1) rues Fx > 0, and (2) rues F1 -- 0. In the first case it follows from (1.9) that 

I(ul)tl=l(u2)tl=O on FI" 

But (u2)t ffi (111)t + P, from which Pt = 0 on F1. Since the set Ff is not orthogonal to Fo, p -- (0, 0) and therefore 
n 1 ~ u 2. 

Suppose now that mes P1 = O, i.e. [ot [ = g almost everywhere on Up We have 

) = 2 a ( u l  ,u I ) -  L(111 ) + j ( u  I ) J(u! 

+ P) ffi la(u1,111 ) - L(u2 ) + j(u2 ) J(ul 

Subtracting the second equation from the first, we obtain 
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Then, using (1.9), we have 

L(u 2 - u  i ) + j ( n  I ) - j ( u  2 )=0 ,  L (p )+ j (u  I ) - j ( u  2 ) = 0  (2.4) 

f~Ot(ul)+g~=O, I~llOt(ul)l--gl~l, Iptlg=gl~l 

Ip~l---I~l (~--I(Ul) t +ptl-l(Ul)tl) 

almost everywhere on r~ 
Since F I is a rectilinear section and 13 = (a, 0), we have I Ptl = c -- const ~ 0 on Ff (the set F 0 being non-orthogonal 

to Fl). We know [2, p. 50] that the space W2(~) is contained in the space C(~)  of functions continuous on t~. Hence 
the function ~ is continuous on F I. We put 

It is clear that mes (Fe U F-F) = mes F/~ Suppose that mes F~ > 0 and mes F_e > 0 both hold. Then it follows 
from the continuity of ~ on F/that  a point Xo exists at which ~ = O. Thus a 8 > 0 exists such that for allx • Bs(xo) 
N r (Ba(xo) ffi {x • R2: Ix -x0l  < 81 }) the inequality ~ < ~'/2 is satisfied. Since mes (Bs(x0) f3 V) > 0, we obtain 
a contradiction to the condition mes (Fe U F_F). Hence either mes Fe = mes F! or mes F_e = mes l"f. 

If  mes Fc = mes F/~ it follows from (2.4) that 

L(p)+ ~ glfhldF=O 
U 

which contradicts the condition of solvability (2.1). 
If, however, rues F_e = rues F/~ then from (2.4) we have 

L ( p ) -  ~ glptldF=O 
F 

which again contradicts the condition of solvability (2.1). The theorem is proved. 
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