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THE UNIQUENESS OF THE SMOOTH SOLUTION IN
THE STATIC PROBLEM WITH A COULOMB LAW OF
FRICTION AND TWO-SIDED CONTACTY
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Khabarovsk
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The uniqueness of the smooth solution in a problem with friction [1, p. 34] is established for the case when the set of virtual
rigid displacements is non-trivial.

1. THE EQUIVALENCE OF THE BOUNDARY-VALUE
AND VARIATIONAL FORMULATIONS OF A
PROBLEM WITH FRICTION

Let Q C R? be a bounded domain with a fairly regular boundary I'. For the displacement vector u = (uy, uy) we
define the strain tensor

1 au,~ au‘ ..
€U=Eﬁ(“)=5(§;;+a—4J, i,j=1.2

The stress tensor o is a linear combination of components of the strain tensor
g = O',j(ll) = C,-jplspl(u). pl=12

(summation is understood to take place over repeated indices). The components of the elastic moduli tensor Cyy
possess the usual symmetry properties

Ci

ijpl =Cjilp=cpllj' ij,pd=12

and we assume the existence of a positive constant C such that
Cijpi€ij (u(x))€ py (u(x)) 2 Co€;; (u(x))e; (u(x))

Ve (u(x)), VxeQ, ij.pl=12

We consider the formulation of the problem with friction.
Suppose that on a part T of its boundary I' the body Q is subjected to the action of surface forces

Py =0;=Oyn;, i=1.2

(where n = (n;, ny) is the unit vector of the outward normal to I'). On the part I'y the following boundary conditions
are given

uy,=u-n=0, 0,=0

where o, is the shear stress vector, and on the part I'; of the boundary I" boundary conditions are imposed which
correspond to the Coulomb law of friction and two-sided contact [1]

Op=0mn;=T, T,=T:-n
if |o;] <g, thenw, = 0 (g > 0 on Iy); if |o,| = g, then a A = 0 exists such that ¥, = -Ac,.
Here T = (T, T3) is the force with which the second body acts on Q in the contact zone, g(x) is the value of the

friction force, and w, is the shear component of u.
In the domain Q we have the equilibrium condition
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Ao (wWox;=F;, i=12 1.1

where F = (F,, F;) is the vector of forces specified in Q.
Below we shall use the functional spaces [2] L,Q, L,(T), W(Q), WiX(T), WX(Q).
We introduce the Hilbert space [3, p. 27]

H = (ve[W3(E)% v, =0 onTg}

with a scalar product induced from [ ,(Q)~.
We consider the extremal (variational) problem [1, 4]

J(w)= -a(u u)-L(u)+ j(u)-> min, ueH (12)

where
u(ll,‘l)) = I C‘JP'E'J (“)Epl'(\))dn

L(u)= j FudQ+ I Tu,dT + | Pudl, j(u)= j g, ldT.
Ty h Ty

F=(F.FK)elL,QF, P=(RB)ell,())

T=(T,T)elly(T)P, gx)eLl.(Ty). g>0 on Iy

The solution of the problem with friction is also the solution of problem (1.2). If the solution of problem (1.2)
belongs to the space [W2,(Q)], then it is also the solution of the problem with friction. These facts are proved in
the same way as in [1], where thc problem with friction is investigated with the condition Iy = I'; = ¢.

In fact, suppose that u is a solution of the problem with friction. It follows from the boundary conditions of the
problem that

c,(u)-u, +glul=0 on Iy
and so for any v € H we have
o, () (v, -u,)+g(v,l-lul)20 on I', (1.3)

We multiply both sides of Eq. (1.1) by v — u and, using Green’s formula, we obtain
a(ll,D-—ll)— I [0,(“)'(“’-u|)+Gn(u)(un-“u)]dr-
fyofo (14)
—] G (W)(V; —u; )T = f E(v-u);dQ

It follows from the boundary condmons that

J[Gl (u): (“t - Il,')‘i’ 0.(“)\),, — Uy, )l =0
To
Hence
a(u,0=-u)~ Liv-u)= | G,(n) (v, ~u,)dl'
i
We putj(v) = J r;&|u|dT" and add to both sides of the equation the expression j(v) - j(u). We obtain (using (1.3))
a(u,u-w)+ j(v)~ j(u)- L(v~-w)=1, 20
’l = j [G. (“).(ut - “')+ g(l\),l-lll,l)}dl”
Ty
from which the variational inequality
a(uv-w)+ j(u)- jw)2 L(v-u), VYveH (1.5)

follows, which is equlvalent to problem (1.1) (see [5]).

Suppose now that u € [W24(Q)}’ is a solution of problem (1.2), and, of course, also a solution of inequality (1.5)
and D(Q) is the space of infinitely dlfferentlable functions with compact support in Q. In the variational inequality
(15)weputv=u=x¢o Q€ [D(Q)]*. Bearing in mind that all boundary integrals are equal to zero and
Jj(u £ @) —j(u) = 0, we have
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a(u,@)= |FedQ , VQe[DQ))
Q

from which (using the smoothness of the solution) the equilibrium equation (1.1) follows.
Then, applying Green’s formula, we derive Eq. (1.4) from the equilibrium equations. Together with the variational
inequality this gives

j(o;(w)- PYv;—x)dM+ 1, + 1,20, VveH (1.6)
0

where

Iy = [(0,(8)-T, v, —u,)dT.
Ty
Let ‘¥, be the space of vector functions y e [W3”(I")]* with supports in [';. We take v = u *+ y, where y € ¥,
It is clear that in this case

[ (0{(w)-P)y;dT =0, Vye¥,
N
From this it follows [1] that 6,(x) = P, almost everywhere in I';. This also givesI; + I, =0, Vv e H.
We putv = u * @, where 9 € [W (")} is a vector function such that |g,| = 0 on I}, and @, € W) is an
arbitrary function with support in I'. We then have 6, = T,, almost everywhere on I'7[1]. It then follows from (1.6)
that

I, =0, VoeH, n
Let ¥ be the space of vector functions y & [W;*(T")]* with support in I, If y € ‘¥ then we expand v as follows:

Y = y,n + Y, Y, W, = ¥ - nand put v, = y, in (1.7). Since 6,(v) - n = 0 and v € H, we have 6,(v) - ¥, = 6,(v) - y.
Using |[y;| < |y|, we obtain

| [0, (u)- W +glyi}dl - | [0,(u)-u, +glu,l}d 20, Vye¥

I‘f rf
from (1.7).
Replacing y by Ay (A = 0) we find that
f 0/(u)-ydT|s | giylldT, Yye¥; [ [o,(u)u,+glu,ljdT<0 (1.8)
Ty Ty Fy

In the first inequality in (1.8) we represent 6(u) by g o(u)g. We then obtain [1, p. 136] |6(u)| < g almost every-
where on I In this case o,(u) - u, + g|u,|= 0, which, together with the second inequality (1.8), gives the equality

ofu) - u +glu|=0ae. onTy 1.9)

equivalent to the boundary condition which is imposed on the shear components v, and o; in the problem with
friction.
Hence problem (1.2) can be considered as a variational formulation of the original problem with friction.

2. THE UNIQUENESS OF THE SOLUTION OF THE PROBLEM WITH
FRICTION

The kernel R of the bilinear form a(u, v) = [ o C;jpi€;i(v)dQ consists of the vector function p = (py, p;) where
p1(x) = a; — bx,, p2(x) = a; + bx, and ay, a; and b are arbitrary fixed numbers. The subspace R = H N R is a set
of virtual rigid displacements (i.e. displacements of Q as an absolutely rigid body, retaining the strict restrictions).

If for any non-zero vector p € R we have the inequality

[ giptdT—iL(p)>0 1)
Iy

then the variational problem (1.2) is solvable.
The condition of solvability is proved in the same way as in [1], where a similar condition was derived for the
case I'; = I. Indeed, because the functional J is continuous and convex, it is sufficient to show [1, p. 68] that

J(u) = +oo, if flul] > o, u e H (22)
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For v € H we put w = v — Qu, where Q is the orthogonal projection in [L,(Q)]* from H onto R. Hence

v =w+p,pe R. Wepute(v) = | g e;(v)e;(v)d and |l is the norm in [Lr(Q)]%
We have [5, p. 80]

W I, i
a(w, w) = Coe(w, w) = c,£ v, o, Q> QIWI

where C,, C; and C, are positive constants.
Furthermore

e(0)HIVIZ = e(w)+Iwh3 +1pi3 (2.3)

By the Korn inequality expression [v] = ((v) + [fvf|3)"? is.a norm in H. From (2.3) the norm vl is equivalent
to ||w|| + [lpllo. From (2.1) and the finite dimension of the set R a constant C > 0 exists such that

i glp\dT~IL(p)2 Clipliy
Ty
Moreover

Lj(w+p)-j(p) S| | glw,1dTIS Gillwlly (Cy =const>0)
Ty
Hence

J(v)2 %a(w,w)+ j(W+p)+ Cliplig - j(p) = L(w) 2 Cy4 (iwli? +iplly ) + Csliwll

(where C, and C; are positive constants).

Using the fact that Iﬁ)osls equivalent to the quantity [w]| + [lpll assertion (2.2) is proved.

Condition (2.1) guarantees the existence of a solution of the variational problem (1.2). The question of the
uniqueness of the solution of the problem with friction in the case when R is non-trivial appears not to have been
investigated [1, 6] up until now.

Below we shall take I'y and Iy to be rectilinear sections. For convenience we will make the x, coordinate axis lie
along I'y. Then the subspace R = H N R consists of vector functions of the form p = (a, 0), where a is an arbitrary
constant.

Note that in order to satisfy the condition of solvability (2.1) it is necessary for the sections I'y and I to be
non-orthogonal, as otherwise j(p) = | 1 g| p:|dT = 0 and inequality (2.1) is not satisfied.

Given these assumptions about I'y and Ty the following theorem holds.

Theorem. Suppose that the condmon of solvability (2.1) is satisfied. Then the solution of variational problem
(1.2) is unique in the space [W 3(Q)]-.

Proof. Suppose there are two solutions u, and u, in [W3(Q)]*. We have
0= .’(Ill +(ll2 - ))—.l(ul)=a(u|,u2 —Ill)—L(llz —ll])+j(ll2)—
. 1
—J(u, )+Ea(“z =-Up,uz ~m )

In view of (1.5) the last term on the right-hand side of this equation vanishes. Therefore u,— u; € R, i.e. u; =
w; + p where p = (g, 0).

We put Li={&xel: |o,(u,)| < g} (i = 1, 2). It is clear that I'; = T';. We consider the two possible cases:
(1) mes T, > 0, and (2) mes T, = 0. In the first case it follows from (1.9) that

i(ey),1=I(u,),1=0 on I}.
But (uy), = (), + p, from which p, = 0 on [;. Since the set Ty is not orthogonal to Iy, p = (0, 0) and therefore
“IS;;;ose now that mes I’y = 0, i.e. o] = g almost everywhere on I'x We have
I ) == auy )= Lwy )+ jy)

I +p)=-;-a(u.,u. )= Liug)+ j(uy)

Subtracting the second equation from the first, we obtain
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L(up —up)+j(u) - j(uz)=0, L(p)+j(uy)-j(uy)=0 24
Then, using (1.9), we have
no, () +gl=0, Iplio,(u)l=glll, Iplg=glll
Ip=Igl (€ =I(my), +prl=i(uy), 1)

almost everywhere on I'y.

Since Iyis a rectilinear section and p = (a, 0), we have |p;| = = const # 0 on I';(the set ' being non-orthogonal
toTy). We know [2, p. 50] that the space W%(Q2) is contained in the space C(Q) of functions continuous on €. Hence
the function { is continuous on I'y. We put

I;=(xelp:{=¢}, T ;={xel;:{=-c]

It is clear that mes (I'z U I'_z) = mes I';. Suppose that mes I'; > 0 and mes I"_z > 0 both hold. Then it follows
from the continuity of { on Iy that a point x; exists at which { = 0. Thus a 8 > 0 exists such that for all x € Bj(xo)
NT (Bs(xp) = {x e R% |x - xg| < 8|}) the inequality { < &/2 is satisfied. Since mes (Bs(xo) N I') > 0, we obtain

a contradiction to the condition mes (I'z U I'_z). Hence either mes I'; = mes I’y or mes I'_; = mes I.
If mes I, = mes I, it follows from (2.4) that

L(p)+ [ glpidT =0
Ty
which contradicts the condition of solvability (2.1).
If, however, mes I'_; = mes I}, then from (2.4) we have

L(p)- | glp|dT =0
r

which again contradicts the condition of solvability (2.1). The theorem is proved.
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